LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distributed Active Anti-Disturbance Consensus for Leader-Follower Higher-Order Multi-Agent Systems With Mismatched Disturbances

Photo by charlesdeluvio from unsplash

This technical note studies the finite-time consensus problem of leader-follower higher-order multi-agent systems with mismatched disturbances. To solve such a problem, by combining the non-singular terminal sliding-mode control (NTSMC) and… Click to show full abstract

This technical note studies the finite-time consensus problem of leader-follower higher-order multi-agent systems with mismatched disturbances. To solve such a problem, by combining the non-singular terminal sliding-mode control (NTSMC) and disturbance observer based control (DOBC) methods together, a distributed active anti-disturbance cooperative control scheme is proposed. Firstly, to estimate the matched/mismatched disturbances of each follower, a finite-time disturbance observer is constructed. Secondly, by distributedly employing the mismatched disturbances estimates, integral-type non-singular terminal sliding-mode surfaces are designed for followers. Thirdly, distributed protocols are proposed based on the surfaces. In the presence of mismatched disturbances, these protocols achieve finite-time output consensus for the agents. Simulations validate the correctness and effectiveness of the proposed control scheme.

Keywords: follower higher; control; consensus; leader follower; mismatched disturbances; disturbance

Journal Title: IEEE Transactions on Automatic Control
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.