LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Convergence of Limited Communication Gradient Methods

Photo from wikipedia

Distributed optimization increasingly plays a central role in economical and sustainable operation of cyber-physical systems. Nevertheless, the complete potential of the technology has not yet been fully exploited in practice… Click to show full abstract

Distributed optimization increasingly plays a central role in economical and sustainable operation of cyber-physical systems. Nevertheless, the complete potential of the technology has not yet been fully exploited in practice due to communication limitations posed by the real-world infrastructures. This work investigates fundamental properties of distributed optimization based on gradient methods, where gradient information is communicated using a limited number of bits. In particular, a general class of quantized gradient methods are studied, where the gradient direction is approximated by a finite quantization set. Sufficient and necessary conditions are provided on such a quantization set to guarantee that the methods minimize any convex objective function with Lipschitz continuous gradient and a nonempty and bounded set of optimizers. A lower bound on the cardinality of the quantization set is provided, along with specific examples of minimal quantizations. Convergence rate results are established that connect the fineness of the quantization and the number of iterations needed to reach a predefined solution accuracy. Generalizations of the results to a relevant class of constrained problems using projections are considered. Finally, the results are illustrated by simulations of practical systems.

Keywords: quantization set; gradient methods; convergence; communication

Journal Title: IEEE Transactions on Automatic Control
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.