LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Newton-Type Alternating Minimization Algorithm for Convex Optimization

Photo by aldebarans from unsplash

We propose a Newton-type alternating minimization algorithm (NAMA) for solving structured nonsmooth convex optimization problems where the sum of two functions is to be minimized, one being strongly convex and… Click to show full abstract

We propose a Newton-type alternating minimization algorithm (NAMA) for solving structured nonsmooth convex optimization problems where the sum of two functions is to be minimized, one being strongly convex and the other composed with a linear mapping. The proposed algorithm is a line-search method over a continuous, real-valued, exact penalty function for the corresponding dual problem, which is computed by evaluating the augmented Lagrangian at the primal points obtained by alternating minimizations. As a consequence, NAMA relies on exactly the same computations as the classical alternating minimization algorithm (AMA), also known as the dual-proximal gradient method. Under standard assumptions, the proposed algorithm converges with global sublinear and local linear rates, while under mild additional assumptions, the asymptotic convergence is superlinear, provided that the search directions are chosen according to quasi-Newton formulas. Due to its simplicity, the proposed method is well suited for embedded applications and large-scale problems. Experiments show that using limited-memory directions in NAMA greatly improves the convergence speed over AMA and its accelerated variant.

Keywords: alternating minimization; newton type; minimization algorithm

Journal Title: IEEE Transactions on Automatic Control
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.