This article aims at presenting novel square-root unscented Kalman filters (UKFs) for treating various continuous-discrete nonlinear stochastic systems, including target tracking scenarios. These new methods are grounded in the commonly… Click to show full abstract
This article aims at presenting novel square-root unscented Kalman filters (UKFs) for treating various continuous-discrete nonlinear stochastic systems, including target tracking scenarios. These new methods are grounded in the commonly used singular value decomposition (SVD), that is, they propagate not the covariance matrix itself but its SVD factors instead. The SVD based on orthogonal transforms is applicable to any UKF with only nonnegative weights, whereas the remaining ones, which can enjoy negative weights as well, are treated by means of the hyperbolic SVD based on
               
Click one of the above tabs to view related content.