LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mean-Field Game for Collective Decision-Making in Honeybees via Switched Systems

Photo from wikipedia

In this article, we study the optimal control problem arising from the mean-field game formulation of the collective decision-making in honeybee swarms. A population of homogeneous players (the honeybees) has… Click to show full abstract

In this article, we study the optimal control problem arising from the mean-field game formulation of the collective decision-making in honeybee swarms. A population of homogeneous players (the honeybees) has to reach consensus on one of two options. We consider three states: the first two represent the available options (or strategies), and the third one represents the uncommitted state. We formulate the continuous-time discrete-state mean-field game model. The contributions of this article are the following: 1) we propose an optimal control model where players have to control their transition rates to minimize a running cost and a terminal cost, in the presence of an adversarial disturbance; 2) we develop a formulation of the micro–macro model in the form of an initial-terminal value problem with switched dynamics; 3) we study the existence of stationary solutions and the mean-field Nash equilibrium for the resulting switched system; 4) we show that under certain assumptions on the parameters, the game may admit periodic solutions; and 5) we analyze the resulting microscopic dynamics in a structured environment where a finite number of players interact through a network topology.

Keywords: collective decision; decision making; mean field; field game; field

Journal Title: IEEE Transactions on Automatic Control
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.