In this article, we address the problem of global sampled-data output feedback stabilization for a class of nonlinear uncertain systems with delayed output using the continuous-discrete method. Thanks to the… Click to show full abstract
In this article, we address the problem of global sampled-data output feedback stabilization for a class of nonlinear uncertain systems with delayed output using the continuous-discrete method. Thanks to the prediction technique and feedback domination method, a novel coupled design method of predictor-based continuous-discrete observer and linear controller is proposed when only delayed sampled-data output is accessible. The proposed predictor-based observer can effectively estimate the unknown state by compensating the influences of sampling and output delay. The main advantage of the proposed control method is that the full state information and accurate model nonlinearities do not need to be known any more. The global exponential stability of the overall hybrid control system can be ensured when there hold some sufficient conditions with respect to the maximum allowable sampling period and output delay.
               
Click one of the above tabs to view related content.