This article is devoted to the discrete-time sliding mode control (DSMC) for nonlinear semi-Markovian switching systems (S-MSSs). Motivated by the fact that the complete information of the semi-Markov Kernel is… Click to show full abstract
This article is devoted to the discrete-time sliding mode control (DSMC) for nonlinear semi-Markovian switching systems (S-MSSs). Motivated by the fact that the complete information of the semi-Markov Kernel is difficult to be obtained in practical applications, it is recognized to be partly unknown as the most common mean. By utilizing the prior information of the sojourn-time upper bound for each switching mode, sufficient conditions under the equivalent DSMC law are proposed for the mean square stability. Moreover, the designed DSMC law realizes the finite-time reachability of the sliding region, and makes the sliding dynamics converge to the predesignated sliding region in a finite time. In the end, a numerical example and an electronic throttle model are given to validate the proposed control strategy.
               
Click one of the above tabs to view related content.