LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bistatic ISAR Imaging for Nonuniformly Rotating Targets

Photo by quangtri from unsplash

When a target undergoes nonuniform rotational motion (RM), conventional motion compensation (MOCOM) approaches for monostatic inverse synthetic aperture radar (ISAR) systems fail to correct the nonuniform RM error in bistatic… Click to show full abstract

When a target undergoes nonuniform rotational motion (RM), conventional motion compensation (MOCOM) approaches for monostatic inverse synthetic aperture radar (ISAR) systems fail to correct the nonuniform RM error in bistatic radar systems; this failure is caused by nonlinear phase relationships between scatterers in bistatic ISAR (Bi-ISAR) systems. To address this problem, in this paper, we propose a new MOCOM framework for Bi-ISAR imaging of nonuniformly rotating targets. In the proposed method, a newly devised correction is performed to ensure successful RM compensation, followed by translational motion compensation. Because the phase relationships of the scatterers become virtually linear after this correction, nonuniform RM can be successfully converted into uniform RM. Namely, using the proposed method, translational and rotational motion errors are correctly removed, and focused Bi-ISAR images are obtained even for a target involved in nonuniform RM. Furthermore, for more effective use of Bi-ISAR images, a method to restore sheared Bi-ISAR images is exploited in the proposed framework. In the simulations and experiments, we determined that the proposed method can provide high-quality Bi-ISAR images for nonuniformly rotating targets.

Keywords: imaging nonuniformly; nonuniformly rotating; isar; bistatic isar; isar imaging; rotating targets

Journal Title: IEEE Transactions on Aerospace and Electronic Systems
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.