LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Joint Radar-Communications Co-Use Waveform Design Using Optimized Phase Perturbation

Photo from wikipedia

Joint radar-communications dual function has drawn lots of attention since it can make a better use of the scarce wireless frequency resources and expensive hardware platforms. In case of joint… Click to show full abstract

Joint radar-communications dual function has drawn lots of attention since it can make a better use of the scarce wireless frequency resources and expensive hardware platforms. In case of joint radar-communications signal co-use, many communication sequences have poor range sidelobes and thus are not very suitable for the radar function. In this paper, we present a single carrier joint radar-communications method operating in the pulsed radar mode. Digital communication sequences are first partitioned into blocks which are then mapped to digital phase-coded sequences, like binary phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK) sequences. The phases of the digital sequences are perturbed a bit such that certain degrees of freedom are available to optimize for lower range sidelobes. Insignificant phase perturbation will be deemed as phase noise by a communication receiver and then phase codes can be correctly decoded; in radar-processing channels, range compression are performed with known and optimized phase perturbation such that low-range sidelobes are obtained. An implementation scheme is presented. Numerical results with BPSK and QPSK sequences indicate that little phase perturbation can significantly drop the range sidelobe level but will insignificantly rise the bit error rate.

Keywords: phase perturbation; joint radar; radar communications; phase; radar

Journal Title: IEEE Transactions on Aerospace and Electronic Systems
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.