LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust Guidance for a Reusable Launch Vehicle in Terminal Phase

Photo from wikipedia

This article focuses on the 3-D guidance strategy for a reusable launch vehicle (RLV) during terminal area energy management (TAEM) phase. Based on sliding-mode and shrinking-horizon techniques, the proposed scheme… Click to show full abstract

This article focuses on the 3-D guidance strategy for a reusable launch vehicle (RLV) during terminal area energy management (TAEM) phase. Based on sliding-mode and shrinking-horizon techniques, the proposed scheme consists of trajectory generation and correction mechanisms, which can enhance the guidance precision and robustness against disturbances. The RLV guidance model, in the form of a set of highly nonlinear differential equations in the time domain, is recast as an altitude-domain model. By this means, the main characteristics of TAEM gliding motion are extracted. The altitude-domain model is thereby used for trajectory generation. A sliding surface and a guidance law are proposed. Hybrid TAEM constraints can be fully satisfied when the proposed guidance law drives the altitude-domain vehicle model to the designated altitude. Using the proposed guidance law as the input of the altitude-domain model, a constrained TAEM trajectory is generated, leading to TAEM guidance commands simultaneously. The commands are utilized to drive the time-domain model to the terminal target. In an attempt to compensate for model uncertainties and initial deviations, the guidance commands are modified periodically by the shrinking-horizon correction mechanism according to current states. Simulations on different scenarios are provided to demonstrate the performance of the proposed guidance strategy.

Keywords: launch vehicle; reusable launch; guidance; domain; model

Journal Title: IEEE Transactions on Aerospace and Electronic Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.