LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Learning-Inspired Strategy to Design Binary Sequences With Good Correlation Properties: SISO and MIMO Radar Systems

Photo by hajjidirir from unsplash

In this paper, the design of binary sequences exhibiting low values of aperiodic/periodic correlation functions, in terms of Integrated Sidelobe Level (ISL), is pursued via a learning-inspired method. Specifcally, the… Click to show full abstract

In this paper, the design of binary sequences exhibiting low values of aperiodic/periodic correlation functions, in terms of Integrated Sidelobe Level (ISL), is pursued via a learning-inspired method. Specifcally, the synthesis of either a single or a burst of codes is addressed, with reference to both Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) radar systems. Two optimization machines, referred to as two-layer and single-layer Binary Sequence Correlation Network (BiSCorN), able to learn actions to design binary sequences with small ISL/Complementary ISL (CISL) for SISO and MIMO systems are proposed. These two networks differ in terms of the capability to synthesize Low-Correlation-Zone (LCZ) sequences and computational cost. Numerical experiments show that proposed techniques can outperform state-of-the-art algorithms for the design of binary sequences and Complementary Sets of Sequences (CSS) in terms of ISL and, interestingly, of Peak Sidelobe Level (PSL).

Keywords: learning inspired; binary sequences; correlation; design binary; mimo radar

Journal Title: IEEE Transactions on Aerospace and Electronic Systems
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.