In this paper, we present a novel configuration for realizing monolithic substrate integrated waveguide (SIW)-based phased antenna arrays using Ferrite low-temperature cofired ceramic (LTCC) technology. Unlike the current common schemes… Click to show full abstract
In this paper, we present a novel configuration for realizing monolithic substrate integrated waveguide (SIW)-based phased antenna arrays using Ferrite low-temperature cofired ceramic (LTCC) technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc.) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated, and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of ±28° using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of ±19° when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger size implementations.
               
Click one of the above tabs to view related content.