LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Correlation-Based Uncertainty in Loaded Reverberation Chambers

Photo by bradyn from unsplash

When reverberation chambers are loaded to increase the coherence bandwidth for modulated-signal measurements, a secondary effect is decreased spatial uniformity. We show that an appropriate choice of stirring sequence, consisting… Click to show full abstract

When reverberation chambers are loaded to increase the coherence bandwidth for modulated-signal measurements, a secondary effect is decreased spatial uniformity. We show that an appropriate choice of stirring sequence, consisting of a combination of mode-stirring mechanisms such as paddle and antenna-platform stirring, can mitigate the potential for increased uncertainty. We develop a new mode-stirring sample correlation model for uncertainty due to the stirring sequence. In a comparison with an empirical uncertainty analysis, the model is found to have an agreement within 2.5%. Our analysis is demonstrated for four loading cases in each of three reverberation chambers. The model is used to determine an optimal stirring sequence for a given chamber setup directly from correlations associated with each stirring mechanism. The model can also be understood in terms of the entropy of a measurement and it is shown that maximizing the entropy corresponds to a minimized uncertainty. The method presented here not only provides insight into sources of uncertainty but also allows users to determine an optimal mode-stirring sequence with minimized uncertainty for a given chamber setup.

Keywords: stirring sequence; mode stirring; reverberation chambers; uncertainty

Journal Title: IEEE Transactions on Antennas and Propagation
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.