LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DeepNIS: Deep Neural Network for Nonlinear Electromagnetic Inverse Scattering

Photo from wikipedia

Nonlinear electromagnetic (EM) inverse scattering is a quantitative and super-resolution imaging technique, in which more realistic interactions between the internal structure of scene and EM wavefield are taken into account… Click to show full abstract

Nonlinear electromagnetic (EM) inverse scattering is a quantitative and super-resolution imaging technique, in which more realistic interactions between the internal structure of scene and EM wavefield are taken into account in the imaging procedure, in contrast to conventional tomography. However, it poses important challenges arising from its intrinsic strong nonlinearity, ill-posedness, and expensive computational costs. To tackle these difficulties, we, for the first time to our best knowledge, exploit a connection between the deep neural network (DNN) architecture and the iterative method of nonlinear EM inverse scattering. This enables the development of a novel DNN-based methodology for nonlinear EM inverse problems (termed here DeepNIS). The proposed DeepNIS consists of a cascade of multilayer complex-valued residual convolutional neural network modules. We numerically and experimentally demonstrate that the DeepNIS outperforms remarkably conventional nonlinear inverse scattering methods in terms of both the image quality and computational time. We show that DeepNIS can learn a general model approximating the underlying EM inverse scattering system. It is expected that the DeepNIS will serve as powerful tool in treating highly nonlinear EM inverse scattering problems over different frequency bands, which are extremely hard and impractical to solve using conventional inverse scattering methods.

Keywords: neural network; nonlinear electromagnetic; inverse; inverse scattering; electromagnetic inverse

Journal Title: IEEE Transactions on Antennas and Propagation
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.