LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrically Small, Low-Profile, Highly Efficient, Huygens Dipole Rectennas for Wirelessly Powering Internet-of-Things Devices

Photo by cesarfrv93 from unsplash

Wireless power transfer (WPT) technologies are a major trend in emerging internet-of-things (IoT) applications. Because they negate the need for heavy, bulky batteries and can power multiple elements simultaneously, WPT… Click to show full abstract

Wireless power transfer (WPT) technologies are a major trend in emerging internet-of-things (IoT) applications. Because they negate the need for heavy, bulky batteries and can power multiple elements simultaneously, WPT systems enable very compact ubiquitous IoT wireless devices. However, the realization of high-performance, ultracompact (electrically small) rectennas, i.e., the rectifying antennas that enable midrange and far-field WPT, is challenging. We present the first electrically small ( $\textit {ka} < 0.77$ ) and low-profile ( $0.04~\lambda _{0}$ ) linearly (LP) and circularly (CP) polarized WPT rectennas at 915 MHz in the IMS band. They are facilitated by the seamless integration of highly efficient rectifiers, i.e., RF signal to dc power conversion circuits, with electrically small Huygens dipole LP and CP antennas. Their optimized prototypes have cardioid, broadside radiation patterns, and effective capture areas larger than their physical size. Experimental results validate that they achieve an 89% peak ac-to-dc conversion efficiency, effectively confirming that they are ideal candidates for many of the emerging IoT applications.

Keywords: tex math; internet things; low profile; inline formula; electrically small; highly efficient

Journal Title: IEEE Transactions on Antennas and Propagation
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.