LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Compact Beamsteering Metasurface Lens Array Antenna With Low-Cost Phased Array

Photo by harpreetkaka from unsplash

A metasurface (MTS) lens array (MLA) fed by a phased array with less phase shifters (PSs) is proposed for compact low-cost beamsteering applications. By dividing a single-large-aperture lens into $N$… Click to show full abstract

A metasurface (MTS) lens array (MLA) fed by a phased array with less phase shifters (PSs) is proposed for compact low-cost beamsteering applications. By dividing a single-large-aperture lens into $N$ small-aperture lens elements with the focus-to-diameter ratio of a lens antenna unchanged, the overall thickness of the proposed antenna is reduced by $N$ times. The beamsteering is achieved in two steps. First, the main beam direction of MLA antenna is switched over a large angular step by shifting the feeding antennas beneath each lens element. Then, the switched beams are fine steered by a low-cost $N$ -element phased array. Theoretical analysis using array theory is performed to work out a general design method with discussion on the taper and spillover effect of feed-power pattern on the lens array. Based on the proposed method, a three-lens linear MLA fed by a phased array is designed to operate at 10 GHz. The proposed antenna achieves a 3 dB beamwidth coverage range of ±30° with a beam crossing level higher than −3 dB and a gain tolerance of 1.6 dB with a maximum gain of 19.1 dBi. The presented antenna can be used to achieve volumetric beamsteering performance directly. The proposed design features the merits of higher gain, lower cost, simpler feeding network, less PSs, and lower profile compared with conventional full phased arrays and single-aperture lens antennas.

Keywords: tex math; inline formula; lens array; phased array; cost

Journal Title: IEEE Transactions on Antennas and Propagation
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.