LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic mmWave Channel Emulation in a Cost-Effective MPAC with Dominant-Cluster Concept

Photo by jannerboy62 from unsplash

Millimeter-Wave (mmWave) massive multiple-input multiple-output (MIMO) has been considered as a key enabler for the fifth-generation (5G) communications. It is essential to design and test mmWave 5G devices under various… Click to show full abstract

Millimeter-Wave (mmWave) massive multiple-input multiple-output (MIMO) has been considered as a key enabler for the fifth-generation (5G) communications. It is essential to design and test mmWave 5G devices under various realistic scenarios, since the radio propagation channels pose intrinsic limitations on the performance. This requires emulating a realistic dynamic mmWave channels in a reproducible manner in laboratories, which is the goal of this paper. In this contribution, we firstly illustrate the dominant-cluster(s) concept, where the non-dominant clusters in the mmWave channels are pruned, for mmWave 5G devices applying massive MIMO beamforming. This demonstrates the importance and necessity to accurately emulate the mmWave channels at a cluster level rather than the composite-channel level. Thus, an over-the-air (OTA) emulation strategy for dynamic mmWave channels is proposed based on the concept of dominant-cluster(s) in a sectored multiprobe anechoic chamber (SMPAC). The key design parameters including the probe number and the angular spacing of probes are investigated through comprehensive simulations. A cost-effective switchcircuit is also designed for this purpose and validated in the simulation. Furthermore, a dynamic mmWave channel measured in an indoor scenario at 28-30 GHz is presented, where the proposed emulation strategy is also validated by reproducing the measured reality.

Keywords: mmwave channels; emulation; concept; dominant cluster; dynamic mmwave

Journal Title: IEEE Transactions on Antennas and Propagation
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.