The rapid development of renewable wind energy asks for new technology and the scheme of superconducting dc generators with superconducting dc transmission cables provides a possible and innovative solution to… Click to show full abstract
The rapid development of renewable wind energy asks for new technology and the scheme of superconducting dc generators with superconducting dc transmission cables provides a possible and innovative solution to this trend. This paper designs a 10-MW superconducting dc generator with copper armature winding in the rotor. To find a suitable configuration of the armature winding, distributed winding, namely double-layer lap winding, and concentrated winding are analyzed and compared. The commutation principal of the two types of armature winding is briefly introduced by a simplified case. Electromagnetic performance, including torque, no-load voltage, and coil current, of the two types are calculated and compared based on the finite-element software. The reasons contributing to the performance difference are also elaborated.
               
Click one of the above tabs to view related content.