The knowledge of the temperature-induced changes of the superconductor volume and of the thermomechanical behavior of the different coil and tooling materials is required for predicting the coil geometry and… Click to show full abstract
The knowledge of the temperature-induced changes of the superconductor volume and of the thermomechanical behavior of the different coil and tooling materials is required for predicting the coil geometry and the stress distribution in the coil after the Nb3Sn reaction heat treatment. In this paper, we have measured the Young's and shear moduli of the HL-LHC 11 T Nb3Sn dipole magnet coil and reaction tool constituents during in situ heat cycles with the dynamic resonance method. The thermal expansion behaviors of the coil components and of a free standing Nb3Sn wire were compared based on dilation experiments.
               
Click one of the above tabs to view related content.