Selective assembly has been employed to obtain high-precision assemblies of two mating parts. Most studies only consider the case where machines are reliable and the buffer capacity is infinite. However,… Click to show full abstract
Selective assembly has been employed to obtain high-precision assemblies of two mating parts. Most studies only consider the case where machines are reliable and the buffer capacity is infinite. However, unreliable machines and finite buffers are commonly observed in many assembly systems, such as battery pack assemblies and powertrain production lines in the automotive industry. This paper studies a selective assembly system with two component machines, two finite buffers, and one assembly machine. Each component can exhibit different quality behaviors. Bernoulli machine reliability models are assumed. Analytical methods based on a two-level decomposition procedure are developed to evaluate the system performance efficiently. Numerical experiments suggest that the iteration always converges and can deliver high estimation accuracy. Extension to larger systems is also discussed.
               
Click one of the above tabs to view related content.