LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Planning and Control for Collision-Free Cooperative Aerial Transportation

Photo by jessicaanne from unsplash

This paper presents planning and control synthesis for multiple aerial manipulators to transport a common object. Each aerial manipulator that consists of a hexacopter and a two-degree-of-freedom robotic arm is… Click to show full abstract

This paper presents planning and control synthesis for multiple aerial manipulators to transport a common object. Each aerial manipulator that consists of a hexacopter and a two-degree-of-freedom robotic arm is controlled by an augmented adaptive sliding mode controller based on a closed-chain robot dynamics. We propose a motion planning algorithm by exploiting rapidly exploring random tree star (RRT*) and dynamic movement primitives (DMPs). The desired path for each aerial manipulator is obtained by using RRT* with Bezier curve, which is designed to handle environmental obstacles, such as buildings or equipments. During aerial transportation, to avoid unknown obstacle, DMPs modify the trajectory based on the virtual leader–follower structure. By the combination of RRT* and DMPs, the cooperative aerial manipulators can carry a common object to keep reducing the interaction force between multiple robots while avoiding an obstacle in the unstructured environment. To validate the proposed planning and control synthesis, two experiments with multiple custom-made aerial manipulators are presented, which involve user-guided trajectory and RRT*-planned trajectory tracking in unstructured environments.Note to Practitioners—This paper presents a viable approach to autonomous aerial transportation using multiple aerial manipulators equipped with a multidegree-of-freedom robotic arm. Existing approaches for cooperative manipulation based on force decomposition or impedance-based control often require a heavy or expensive force/torque sensor. However, this paper suggests a method without using a heavy or expensive force/torque sensor based on closed-chain dynamics in joint space and rapidly exploring random tree star (RRT*) that generates the desired trajectory of aerial manipulators. Unlike conventional RRT*, in this paper, our method can also avoid an unknown moving obstacle during aerial transportation by exploiting RRT* and dynamic movement primitives. The proposed planning and control synthesis is tested to demonstrate performance in a lab environment with two custom-made aerial manipulators and a common object.

Keywords: aerial manipulators; control; rrt; planning control; aerial transportation

Journal Title: IEEE Transactions on Automation Science and Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.