LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Hybrid Prediction Method for Realistic Network Traffic With Temporal Convolutional Network and LSTM

Photo from wikipedia

Accurate and real-time prediction of network traffic can not only help system operators allocate resources rationally according to their actual business needs but also help them assess the performance of… Click to show full abstract

Accurate and real-time prediction of network traffic can not only help system operators allocate resources rationally according to their actual business needs but also help them assess the performance of a network and analyze its health status. In recent years, neural networks have been proved suitable to predict time series data, represented by the model of a long short-term memory (LSTM) neural network and a temporal convolutional network (TCN). This article proposes a novel hybrid prediction method named SG and TCN-based LSTM (ST-LSTM) for such network traffic prediction, which synergistically combines the power of the Savitzky-Golay (SG) filter, the TCN, as well as the LSTM. ST-LSTM employs a three-phase end-to-end methodology serving time series prediction. It first eliminates noise in raw data using the SG filter, then extracts short-term features from sequences applying the TCN, and then captures the long-term dependence in the data exploiting the LSTM. Experimental results over real-world datasets demonstrate that the proposed ST-LSTM outperforms state-of-the-art algorithms in terms of prediction accuracy.

Keywords: temporal convolutional; lstm; prediction; network traffic; network

Journal Title: IEEE Transactions on Automation Science and Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.