Recently, the prevalence of mobile devices together with the outburst of user-generated contents has fueled the tremendous growth of the Internet traffic taken by video streaming. To improve user-perceived quality-of-experience… Click to show full abstract
Recently, the prevalence of mobile devices together with the outburst of user-generated contents has fueled the tremendous growth of the Internet traffic taken by video streaming. To improve user-perceived quality-of-experience (QoE), dynamic adaptive streaming via HTTP (DASH) has been widely adopted by practical systems to make streaming smooth under limited bandwidth. However, previous DASH approaches mostly performed complicated rate adaptation based on bandwidth estimation, which has been proven to be unreliable over HTTP. In this paper, we simplify the design by only exploiting client-side buffer state information and propose a pure buffer-based DASH scheme to optimize user QoE. Our approach can not only get rid of the drawback caused by inaccurate bandwidth estimation, but also incur very limited overhead. We explicitly define an integrated user QoE model, which takes playback freezing, bitrate switch, and video quality into account, and then formulate the problem into a non-linear stochastic optimal control problem. Next, we utilize control theory to design a dynamic buffer-based controller for DASH, which determines video bitrate of each chunk to be requested and stabilize the buffer level in the meanwhile. Extensive experiments have been conducted to validate the advantages of our approach, and the results show that our approach can achieve the best performance compared with other alternative approaches.
               
Click one of the above tabs to view related content.