LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sequential Reinforced 360-Degree Video Adaptive Streaming With Cross-User Attentive Network

Photo from wikipedia

In the tile-based 360-degree video streaming, predicting user’s future viewpoints and developing adaptive bitrate (ABR) algorithms are essential for optimizing user’s quality of experience (QoE). Traditional single-user based viewpoint prediction… Click to show full abstract

In the tile-based 360-degree video streaming, predicting user’s future viewpoints and developing adaptive bitrate (ABR) algorithms are essential for optimizing user’s quality of experience (QoE). Traditional single-user based viewpoint prediction methods fail to achieve good performance in long-term prediction, and the recently proposed reinforcement learning (RL) based ABR schemes applied in traditional video streaming can not be directly applied in the tile-based 360-degree video streaming due to the exponential action space. Therefore, we propose a sequential reinforced 360-degree video streaming scheme with cross-user attentive network. Firstly, considering different users may have the similar viewing preference on the same video, we propose a cross-user attentive network (CUAN), boosting the performance of long-term viewpoint prediction by selectively utilizing cross-user information. Secondly, we propose a sequential RL-based (360SRL) ABR approach, transforming action space size of each decision step from exponential to linear via introducing a sequential decision structure. We evaluate the proposed CUAN and 360SRL using trace-driven experiments and experimental results demonstrate that CUAN and 360SRL outperform existing viewpoint prediction and ABR approaches with a noticeable margin.

Keywords: video; 360 degree; degree video; cross user

Journal Title: IEEE Transactions on Broadcasting
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.