LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spatiotemporal Feature Hierarchy-Based Blind Prediction of Natural Video Quality via Transfer Learning

Photo by ludovicolovi from unsplash

In this paper, we propose a pyramidal spatiotemporal feature hierarchy (PSFH)-based no-reference (NR) video quality assessment (VQA) method using transfer learning. First, we generate simulated videos by a generative adversarial… Click to show full abstract

In this paper, we propose a pyramidal spatiotemporal feature hierarchy (PSFH)-based no-reference (NR) video quality assessment (VQA) method using transfer learning. First, we generate simulated videos by a generative adversarial network (GAN)-based image restoration model. The residual maps between the distorted frames and simulated frames, which can capture rich information, are utilized as one input of the quality regression network. Second, we use 3D convolution operations to construct a PSFH network with five stages. The spatiotemporal features incorporating the shared features transferred from the pretrained image restoration model are fused stage by stage. Third, with the guidance of the transferred knowledge, each stage generates multiple feature mapping layers that encode different semantics and degradation information using 3D convolution layers and gated recurrent units (GRUs). Finally, five approximate perceptual quality scores and a precise prediction score are obtained by fully connected (FC) networks. The whole model is trained under a finely designed loss function that combines pseudo-Huber loss and Pearson linear correlation coefficient (PLCC) loss to improve the robustness and prediction accuracy. According to the extensive experiments, outstanding results can be obtained compared with other state-of-the-art methods. Both the source code and models are available online.1

Keywords: quality; feature hierarchy; feature; video quality; prediction; spatiotemporal feature

Journal Title: IEEE Transactions on Broadcasting
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.