LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Visible Light Positioning With Lens Compensation for Non-Lambertian Emission

Photo by ale_s_bianchi from unsplash

With greater demands for cost-effective, reliable, and highly accurate positioning, indoor wireless localisation using Visible Light Positioning (VLP) is a promising solution for future networks. One can expect VLP solutions… Click to show full abstract

With greater demands for cost-effective, reliable, and highly accurate positioning, indoor wireless localisation using Visible Light Positioning (VLP) is a promising solution for future networks. One can expect VLP solutions to appear in all environments, from homes to industry; however, the existing literature primarily considers Visible Light Communication (VLC) sources with purely Lambertian emission patterns. To facilitate greater versatility within VLP solutions, this paper considers non-Lambertian sources. It evaluates practical Received Signal Strength Indicator (RSSI) data obtained during the Internet of Radio Light (IoRL) 5G Measurement Campaign conducted in a home environment using non-Lambertian Total Internal Reflection (TIR) lenses, which produce a halo lighting effect. The initial analysis explores the calibration of Lambertian source parameters against datasheet values leading to reductions in the average Positioning Error (PE) of 17% and 3% for averaged and individual RSSI measurement sets, respectively. While this highlights improvements from correct calibration, the Lambertian model proved to be unsuitable for non-Lambertian sources. In the absence of any existing non-Lambertian models, the authors proposed the Halo Lens Compensation (HLC) method to calibrate the considered non-Lambertian TIR sources correctly. The HLC further reduced PE in the calibrated results by 50% and 39%, with mean PE of 3.1 cm and 4.6 cm for averaged and individual RSSI measurement sets, respectively. In conclusion, for VLP using non-Lambertian sources, the existing Lambertian model is unsuitable. However, the proposed HLC is highly effective and achieves positioning accuracy comparable to existing literature using Lambertian sources.

Keywords: lens compensation; light positioning; non lambertian; lambertian sources; visible light; lambertian emission

Journal Title: IEEE Transactions on Broadcasting
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.