LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Hybrid CMOS-Memristor Neuromorphic Synapse

Photo by thisisengineering from unsplash

Although data processing technology continues to advance at an astonishing rate, computers with brain-like processing capabilities still elude us. It is envisioned that such computers may be achieved by the… Click to show full abstract

Although data processing technology continues to advance at an astonishing rate, computers with brain-like processing capabilities still elude us. It is envisioned that such computers may be achieved by the fusion of neuroscience and nano-electronics to realize a brain-inspired platform. This paper proposes a high-performance nano-scale Complementary Metal Oxide Semiconductor (CMOS)-memristive circuit, which mimics a number of essential learning properties of biological synapses. The proposed synaptic circuit that is composed of memristors and CMOS transistors, alters its memristance in response to timing differences among its pre- and post-synaptic action potentials, giving rise to a family of Spike Timing Dependent Plasticity (STDP). The presented design advances preceding memristive synapse designs with regards to the ability to replicate essential behaviours characterised in a number of electrophysiological experiments performed in the animal brain, which involve higher order spike interactions. Furthermore, the proposed hybrid device CMOS area is estimated as $600\ \mu {\text{m}}^2$ in a $0.35\ \mu {\text{m}}$ process—this represents a factor of ten reduction in area with respect to prior CMOS art. The new design is integrated with silicon neurons in a crossbar array structure amenable to large-scale neuromorphic architectures and may pave the way for future neuromorphic systems with spike timing-dependent learning features. These systems are emerging for deployment in various applications ranging from basic neuroscience research, to pattern recognition, to Brain-Machine-Interfaces.

Keywords: synapse; memristor neuromorphic; cmos memristor; hybrid cmos; neuromorphic synapse; brain

Journal Title: IEEE Transactions on Biomedical Circuits and Systems
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.