LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A 4.49nW/Pixel Light-to-Stimulus Duration Converter-Based Retinal Prosthesis Chip

Photo by ale_s_bianchi from unsplash

This paper presents a 288-pixel retinal prosthesis (RP) chip implemented in a 0.18 μm CMOS process. The proposed light-to-stimulus duration converter (LSDC) and biphasic stimulator generate a wide range of… Click to show full abstract

This paper presents a 288-pixel retinal prosthesis (RP) chip implemented in a 0.18 μm CMOS process. The proposed light-to-stimulus duration converter (LSDC) and biphasic stimulator generate a wide range of retinal stimuli proportional to the incident light intensity at a low supply voltage of 1V. The implemented chip shows 25.5 dB dynamic stimulation range and the state-of-the art low power consumption of 4.49 nW/pixel. Ex-vivo experiments were performed with a mouse retina and patch-clamp recording. The electrical artifact recorded by the patch electrode demonstrates that the proposed chip can generate electrical stimuli that have different pulse durations depending on the light intensity. Correspondingly, the spike counts in a retinal ganglion cell (RGC) were successfully modulated by the brightness of the light stimuli.

Keywords: light stimulus; retinal prosthesis; stimulus duration; chip; prosthesis chip; duration converter

Journal Title: IEEE Transactions on Biomedical Circuits and Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.