In this work, we present an 8-channel reconfigurable multimodal neural-recording IC, which provides improved availability and usability of recording channels in various experiment scenarios. Each recording channel changes its configuration… Click to show full abstract
In this work, we present an 8-channel reconfigurable multimodal neural-recording IC, which provides improved availability and usability of recording channels in various experiment scenarios. Each recording channel changes its configuration depending on whether the channel is assigned to record voltage or current signal. As a result, although the total number of channels is fixed by design, the channels utilized for voltage and current recording can be set freely and optimally for given experiment targets, scenarios, and circumstances, maximizing the availability and usability of recording channels.The proposed concept was demonstrated by fabricating the IC using a standard 180-nm CMOS process.Using the IC, we successfully performed an in vivo experiment from the hippocampal area of a mouse brain. The measured input noise of the reconfigurable front-end is 4.75 μVrms at voltage-recording mode and 7.4 pArms at current-recording mode while consuming 5.72 μW/channel.
               
Click one of the above tabs to view related content.