LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An 18.6-$\mu $W/Ch TDM-Based 8-Channel Noncontact ECG Recording IC With Common-Mode Interference Suppression

Photo by justinchrn from unsplash

This paper presents an 8-channel electrocardiogram (ECG) monitoring integrated circuit (IC) controlled by time-division multiplexing (TDM). The proposed TDM compensates the electrode DC offsets by forming an individual discrete-time feedback… Click to show full abstract

This paper presents an 8-channel electrocardiogram (ECG) monitoring integrated circuit (IC) controlled by time-division multiplexing (TDM). The proposed TDM compensates the electrode DC offsets by forming an individual discrete-time feedback loop per channel while sharing an analog frontend. This enables a chopping-free open-loop amplification, achieving a high input impedance suitable for a noncontact ECG monitoring. In addition, a common-mode interference (CMI) cancellation scheme is also introduced in the proposed TDM schedule for the realization of a pseudo-driven-right leg (DRL) in a multichannel environment. The designed system is implemented in 180 nm CMOS. The chip dissipates 18.6 μW/channel including the power consumption by ADC. It shows the total-CMRR of 100 dB against CMI voltage swing up to 20 VPP. The chip is verified in noncontact 8-channel ECG using conventional passive electrodes.

Keywords: tdm; noncontact ecg; common mode; mode interference

Journal Title: IEEE Transactions on Biomedical Circuits and Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.