LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ECG-Based Classification of Resuscitation Cardiac Rhythms for Retrospective Data Analysis

Photo from wikipedia

Objective: There is a need to monitor the heart rhythm in resuscitation to improve treatment quality. Resuscitation rhythms are categorized into: ventricular tachycardia (VT), ventricular fibrillation (VF), pulseless electrical activity… Click to show full abstract

Objective: There is a need to monitor the heart rhythm in resuscitation to improve treatment quality. Resuscitation rhythms are categorized into: ventricular tachycardia (VT), ventricular fibrillation (VF), pulseless electrical activity (PEA), asystole (AS), and pulse-generating rhythm (PR). Manual annotation of rhythms is time-consuming and infeasible for large datasets. Our objective was to develop ECG-based algorithms for the retrospective and automatic classification of resuscitation cardiac rhythms. Methods: The dataset consisted of 1631 3-s ECG segments with clinical rhythm annotations, obtained from 298 out-of-hospital cardiac arrest patients. In total, 47 wavelet- and time-domain-based features were computed from the ECG. Features were selected using a wrapper-based feature selection architecture. Classifiers based on Bayesian decision theory, k-nearest neighbor, k-local hyperplane distance nearest neighbor, artificial neural network (ANN), and ensemble of decision trees were studied. Results: The best results were obtained for ANN classifier with Bayesian regularization backpropagation training algorithm with 14 features, which forms the proposed algorithm. The overall accuracy for the proposed algorithm was 78.5%. The sensitivities (and positive-predictive-values) for AS, PEA, PR, VF, and VT were 88.7% (91.0%), 68.9% (70.4%), 65.9% (69.0%), 86.2% (83.8%), and 78.8% (72.9%), respectively. Conclusions: The results demonstrate that it is possible to classify resuscitation cardiac rhythms automatically, but the accuracy for the organized rhythms (PEA and PR) is low. Significance: We have made an important step toward making classification of resuscitation rhythms more efficient in the sense of minimal feedback from human experts.

Keywords: cardiac rhythms; classification resuscitation; rhythms; resuscitation; resuscitation cardiac

Journal Title: IEEE Transactions on Biomedical Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.