LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles.
Sign Up to like articles & get recommendations!
Is EMG a Viable Alternative to BCI for Detecting Movement Intention in Severe Stroke?
Objective: In light of the shortcomings of current restorative brain–computer interfaces (BCI), this study investigated the possibility of using EMG to detect hand/wrist extension movement intention to trigger robot-assisted training… Click to show full abstract
Objective: In light of the shortcomings of current restorative brain–computer interfaces (BCI), this study investigated the possibility of using EMG to detect hand/wrist extension movement intention to trigger robot-assisted training in individuals without residual movements. Methods: We compared movement intention detection using an EMG detector with a sensorimotor rhythm based EEG-BCI using only ipsilesional activity. This was carried out on data of 30 severely affected chronic stroke patients from a randomized control trial using an EEG-BCI for robot-assisted training. Results: The results indicate the feasibility of using EMG to detect movement intention in this severely handicapped population; probability of detecting EMG when patients attempted to move was higher (p$ <$ 0.001) than at rest. Interestingly, 22 out of 30 (or 73%) patients had sufficiently strong EMG in their finger/wrist extensors. Furthermore, in patients with detectable EMG, there was poor agreement between the EEG and EMG intent detectors, which indicates that these modalities may detect different processes. Conclusion : A substantial segment of severely affected stroke patients may benefit from EMG-based assisted therapy. When compared to EEG, a surface EMG interface requires less preparation time, which is easier to don/doff, and is more compact in size. Significance: This study shows that a large proportion of severely affected stroke patients have residual EMG, which yields a direct and practical way to trigger robot-assisted training.
Share on Social Media:
  
        
        
        
Sign Up to like & get recommendations! 1
Related content
More Information
            
News
            
Social Media
            
Video
            
Recommended
               
Click one of the above tabs to view related content.