LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Estimating the Memory Order of Electrocorticography Recordings

Photo by sharonmccutcheon from unsplash

Objective: This paper presents a data-driven method for estimating the memory order (the average length of the statistical dependence of a given sample on previous samples) of a recorded electrocorticography… Click to show full abstract

Objective: This paper presents a data-driven method for estimating the memory order (the average length of the statistical dependence of a given sample on previous samples) of a recorded electrocorticography (ECoG) sequence. Methods: The proposed inference method is based on the relationship between the loss in predicting the next sample in a time-series and the dependence of this sample on the previous samples. Specifically, the memory order is estimated to be the number of past samples that minimize the least squares error (LSE) in predicting the next sample. To deal with the lack of an analytical model for ECoG recordings, the proposed method combines a collection of different predictors, thereby achieving LSE at least as low as the LSE achieved by each of the different predictors. Results: ECoG recordings from six patients with epilepsy were analyzed, and the empirical cumulative density functions (ECDFs) of the memory orders estimated from these recordings were generated, for rest as well as pre-ictal time intervals. For pre-ictal time intervals, the electrodes corresponding to the seizure-onset-zone were separately analyzed. The estimated ECDFs were different between patients and between different types of blocks. For all the analyzed patients, the estimated memory orders were on the order of tens of milliseconds (up to 100 ms). Significance: The proposed method facilitates the estimation of the causal associations between ECoG recordings, as these associations strongly depend on the recordings’ memory. An improved estimation of causal associations can improve the performance of algorithms that use ECoG recordings to localize the epileptogenic zone. Such algorithms can aid doctors in their pre-surgical planning for the surgery of patients with epilepsy.

Keywords: order; memory; memory order; ecog recordings; electrocorticography; estimating memory

Journal Title: IEEE Transactions on Biomedical Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.