LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Binocular Matching Model Based on Hierarchical V1 and V2 Receptive Fields With Color, Orientation, and Region Feature Information

Photo from wikipedia

Binocular matching models serve as the core component in most stereo visual aid systems developed for people with visual impairments. However, purely computational models lack a neuro-biological basis for explaining… Click to show full abstract

Binocular matching models serve as the core component in most stereo visual aid systems developed for people with visual impairments. However, purely computational models lack a neuro-biological basis for explaining the phenomena observed in neuro-biology, and therefore offer no support for the development of bioengineering applications, and are overly complex for hardware implementation. In contrast, existing neurobiological models suffer from low matching calculation accuracy. Therefore, the present work proposes a novel binocular matching model based on the receptive field of simple cells rather than on image pixels, and thereby incorporates neurobiological structure, reduces hardware complexity, has enough accuracy and can be used in visual aid system. The proposed model is employed to calculate and optimize the binocular disparity via a cost function. Specifically, we simulate the functions and structures of V1 and V2 neurons according to the discoveries of modern neurobiology. Accordingly, the receptive fields of V1 layer neurons are aggregated to obtain the receptive fields of the V2 layer, and the disparity is obtained in the V2 layer. The accuracy of the proposed model is verified by comparisons of the disparity results obtained using the proposed model with those obtained using other neurobiological model, and thereby demonstrates that the model can guide the design of visual aid systems.

Keywords: binocular matching; receptive fields; visual aid; model based; model; matching model

Journal Title: IEEE Transactions on Biomedical Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.