LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stimulus-Stimulus Transfer Based on Time-Frequency-Joint Representation in SSVEP-Based BCIs

Photo by jontyson from unsplash

Objective: Brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) require extensive and costly calibration to achieve high performance. Using transfer learning to re-use existing calibration data from old… Click to show full abstract

Objective: Brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) require extensive and costly calibration to achieve high performance. Using transfer learning to re-use existing calibration data from old stimuli is a promising strategy, but finding commonalities in the SSVEP signals across different stimuli remains a challenge. Method: This study presents a new perspective, namely time-frequency-joint representation, in which SSVEP signals corresponding to different stimuli can be synchronized, and thus can emphasize common components. According to this time-frequency-joint representation, an adaptive decomposition technique based on the multi-channel adaptive Fourier decomposition (MAFD) is proposed to adaptively decompose SSVEP signals of different stimuli simultaneously. Then, common components can be identified and transferred across stimuli. Results: A simulation study on public SSVEP datasets demonstrates that the proposed stimulus-stimulus transfer method has the ability to extract and transfer these common components across stimuli. By using calibration data from eight source stimuli, the proposed stimulus-stimulus transfer method can generate SSVEP templates of other 32 target stimuli. It boosts the ITR of the stimulus-stimulus transfer based recognition method from 95.966 bits/min to 123.684 bits/min. Conclusion: By extracting and transfer common components across stimuli in the proposed time-frequency-joint representation, the proposed stimulus-stimulus transfer method produces good classification performance without requiring calibration data of target stimuli. Significance: This study provides a synchronization standpoint to analyze and model SSVEP signals. In addition, the proposed stimulus-stimulus method shortens the calibration time and thus improve comfort, which could facilitate real-world applications of SSVEP-based BCIs.

Keywords: time; stimulus transfer; stimulus stimulus; stimulus; ssvep

Journal Title: IEEE Transactions on Biomedical Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.