Objective: In conventional cochlear implantation, the insertion of the electrode array is strongly affected by the local anatomy and human kinematics. Herein, we present a concept for an insertion tool… Click to show full abstract
Objective: In conventional cochlear implantation, the insertion of the electrode array is strongly affected by the local anatomy and human kinematics. Herein, we present a concept for an insertion tool that allows to optimize the insertion trajectory beyond anatomical constraints and stabilizes the electrode array in manual implantation. A novel sleeve-based design allows the instrument to be compliant and potentially protective to intracochlear structures, while a tear-open mechanism allows it to be removed after insertion by simply retracting the tool. Methods: Conventional and tool-guided manual insertions were performed by expert cochlear implant surgeons in an analog temporal bone model that allows to simultaneously record intracochlear pressure, insertion forces and electrode array deformation. Results: Comparison between conventional and tool-guided insertions demonstrate a substantial reduction of maximum insertion forces, force variations, transverse intracochlear electrode array movement, and pressure transients. Conclusion: The presented tool can be utilized in manual cochlear implantation and significantly improves key metrics associated with intracochlear trauma. Significance: The instrument may ultimately help improve hearing outcomes in cochlear implantation. The versatile design may be used in both manual cochlear implantation and motorized and robotic insertion, as well as image-guided surgery.
               
Click one of the above tabs to view related content.