LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Powered Hip Exoskeleton Reduces Residual Hip Effort Without Affecting Kinematics and Balance in Individuals With Above-Knee Amputations During Walking

Photo from wikipedia

Objective: A unilateral, lightweight powered hip exoskeleton has been shown to improve walking economy in individuals with above-knee amputations. However, the mechanism responsible for this improvement is unknown. In this… Click to show full abstract

Objective: A unilateral, lightweight powered hip exoskeleton has been shown to improve walking economy in individuals with above-knee amputations. However, the mechanism responsible for this improvement is unknown. In this study we assess the biomechanics of individuals with above-knee amputations walking with and without a unilateral, lightweight powered hip exoskeleton. We hypothesize that assisting the residual limb will reduce the net residual hip energy. Methods: Eight individuals with above-knee amputations walked on a treadmill at 1 m/s with and without a unilateral powered hip exoskeleton. Flexion/extension assistance was provided to the residual hip. Motion capture and inverse dynamic analysis were performed to assess gait kinematics, kinetics, center of mass, and center of pressure. Results: The net energy at the residual hip decreased from 0.05±0.04 J/kg without the exoskeleton to −0.01±0.05 J/kg with the exoskeleton (p = 0.026). The cumulative positive energy of the residual hip decreased on average by 18.2% with 95% confidence intervals (CI) (0.20 J/kg, 0.24 J/kg) and (0.16 J/kg, 0.20 J/kg) without and with the exoskeleton, respectively. During stance, the hip extension torque of the residual limb decreased on average by 37.5%, 95% CI (0.28 Nm/kg, 0.36 Nm/kg), (0.17 Nm/kg, 0.23 Nm/kg) without and with the exoskeleton, respectively. Conclusion: Powered hip exoskeleton assistance significantly reduced the net residual hip energy, with concentric energy being the main contributor to this change. We believe that the reduction in residual hip extension torque during early stance is the main contributor to this reduction. Significance: This analysis shows that by assisting the residual hip, the exoskeleton significantly decreased the net hip energy produced by the residual limb, which may explain the improvements in walking economy previously observed.

Keywords: kinematics; hip exoskeleton; hip; powered hip; exoskeleton; residual hip

Journal Title: IEEE Transactions on Biomedical Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.