LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

First-Last: A Cost-Effective Adaptive Routing Solution for TSV-Based Three-Dimensional Networks-on-Chip

Photo by imonnet from unsplash

3D integration opens up new opportunities for future multiprocessor chips by enabling fast and highly scalable 3D Network-on-Chip (NoC) topologies. However, in an aim to reduce the cost of Through-silicon… Click to show full abstract

3D integration opens up new opportunities for future multiprocessor chips by enabling fast and highly scalable 3D Network-on-Chip (NoC) topologies. However, in an aim to reduce the cost of Through-silicon via (TSV), partially vertically connected NoCs, in which only a few vertical TSV links are available, have been gaining relevance. To reliably route packets under such conditions, we introduce a lightweight, efficient and highly resilient adaptive routing algorithm targeting partially vertically connected 3D-NoCs named First-Last. It requires a very low number of virtual channels (VCs) to achieve deadlock-freedom (2 VCs in the East and North directions and 1 VC in all other directions), and guarantees packet delivery as long as one healthy TSV connecting all layers is available anywhere in the network. An improved version of our algorithm, named Enhanced-First-Last is also introduced and shown to dramatically improve performance under low TSV availability while still using less virtual channels than state-of-the-art algorithms. A comprehensive evaluation of the cost and performance of our algorithms is performed to demonstrate their merits with respects to existing solutions.

Keywords: first last; last cost; tsv; adaptive routing; cost; chip

Journal Title: IEEE Transactions on Computers
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.