LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lightweight Power Monitoring Framework for Virtualized Computing Environments

Photo by acfb5071 from unsplash

The pervasive use of virtualization techniques in today's datacenters poses challenges in power monitoring since it is not possible to directly measure the power consumption of a virtual entity such… Click to show full abstract

The pervasive use of virtualization techniques in today's datacenters poses challenges in power monitoring since it is not possible to directly measure the power consumption of a virtual entity such as a virtual machine (VM) and a container. In this paper, we present cWatts++, a lightweight virtual power meter that enables accurate power usage measurement in virtualized computing environments such as VMs and containers of Cloud data centers. At the core of cWatts++ is its application-agnostic power model. To this end, we devise two power models (eventModel and raplModel) that are driven by CPU event counters and the Running Average Power Limit (RAPL) feature of modern Intel CPUs, respectively. While eventModel is more generic and, thus, applicable to a wide range of workloads, raplModel is particularly good for CPU-bound workloads. We have evaluated cWatts++ with its two power models in a real system using the PARSEC benchmark suite and our in-house benchmarks. Our evaluation study demonstrates that these power models have an average error of 4.55 and 1.25 percent, respectively, compared with actual power usage measurements of a real power meter, Cabac Power-Mate.

Keywords: computing environments; power; virtualized computing; power monitoring; power models

Journal Title: IEEE Transactions on Computers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.