LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

OmpSs@FPGA Framework for High Performance FPGA Computing

Photo from wikipedia

This article presents the new features of the OmpSs@FPGA framework. OmpSs is a data-flow programming model that supports task nesting and dependencies to target asynchronous parallelism and heterogeneity. OmpSs@FPGA is… Click to show full abstract

This article presents the new features of the OmpSs@FPGA framework. OmpSs is a data-flow programming model that supports task nesting and dependencies to target asynchronous parallelism and heterogeneity. OmpSs@FPGA is the extension of the programming model addressed specifically to FPGAs. OmpSs environment is built on top of Mercurium source to source compiler and Nanos++ runtime system. To address FPGA specifics Mercurium compiler implements several FPGA related features as local variable caching, wide memory accesses or accelerator replication. In addition, part of the Nanos++ runtime has been ported to hardware. Driven by the compiler this new hardware runtime adds new features to FPGA codes, such as task creation and dependence management, providing both performance increases and ease of programming. To demonstrate these new capabilities, different high performance benchmarks have been evaluated over different FPGA platforms using the OmpSs programming model. The results demonstrate that programs that use the OmpSs programming model achieve very competitive performance with low to moderate porting effort compared to other FPGA implementations.

Keywords: performance; ompss fpga; programming model; fpga; fpga framework; high performance

Journal Title: IEEE Transactions on Computers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.