LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

KVSTL: An Application Support to LSM-Tree Based Key-Value Store via Shingled Translation Layer Data Management

Photo by emben from unsplash

LSM-tree based Key-value (KV) stores greatly fit the needs of write-intensive applications with its efficient data store and retrieval operations to datasets. To accommodate ever-growing datasets, shingled magnetic recording (SMR)… Click to show full abstract

LSM-tree based Key-value (KV) stores greatly fit the needs of write-intensive applications with its efficient data store and retrieval operations to datasets. To accommodate ever-growing datasets, shingled magnetic recording (SMR) drives have become a popular option to provide large storage capacity for KV stores at low cost. SMR drives achieve high storage density via overlapping tracks on the disk surface. However, the overlapped track layout induces the sequential-write constraint and prevents KV stores from storing and rearranging KV pairs efficiently. In this paper, we present KVSTL, a KV store aware Shingled Translation Layer (STL), to preserve the merits of existing KV stores, while exploiting the high storage density of SMR drives. KVSTL is proposed as an application support to hide the management complexity of SMR drives and facilitates the management of SMR drives via passing only the “level” and “invalidation” information of LSM-tree based KV stores onto SMR drives. The proposed KVSTL achieves its performance enhancement via managing key-value pairs with level awareness and enabling efficient storage space management with the invalidation information. The results show that KVSTL can reduce the written data amount for 69.45 percent on average and the latency for up to 62.72 percent when compared with SMR-based LevelDB.

Keywords: tree based; smr drives; lsm tree; management; key value

Journal Title: IEEE Transactions on Computers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.