LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiple Patterning Layout Decomposition Considering Complex Coloring Rules and Density Balancing

Photo from wikipedia

Multiple patterning lithography has been recognized as one of the most promising solutions, in addition to extreme ultraviolet lithography, directed self-assembly, nanoimprint lithography, and electron beam lithography, for advancing the… Click to show full abstract

Multiple patterning lithography has been recognized as one of the most promising solutions, in addition to extreme ultraviolet lithography, directed self-assembly, nanoimprint lithography, and electron beam lithography, for advancing the resolution limit of conventional optical lithography. Multiple patterning layout decomposition (MPLD) becomes more challenging as advanced technology introduces complex coloring rules. Existing works model MPLD as a graph coloring problem; nevertheless, when complex coloring rules are considered, layout decomposition can no longer be modeled accurately by graph coloring. Therefore, in this paper, for capturing the essence of layout decomposition with complex coloring rules, we model the MPLD problem as an exact cover problem. We then propose a fast and exact MPLD framework based on augmented dancing links. Our method is flexible and general: it can consider the basic and complex coloring rules simultaneously, can maintain density balancing, and can handle quadruple patterning and beyond. Experimental results show that our approach outperforms state-of-the-art works on reported conflicts and stitches and is promising for handling complex coloring rules and density balancing as well.

Keywords: multiple patterning; complex coloring; coloring rules; layout decomposition

Journal Title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.