In the era of dark silicon, several components on the chip [i.e., cores, memory, and network on chip (NoC)] need to be powered-off or run in low-power mode. This is… Click to show full abstract
In the era of dark silicon, several components on the chip [i.e., cores, memory, and network on chip (NoC)] need to be powered-off or run in low-power mode. This is mainly due to the increased leakage power consumption at smaller technology nodes. Other than the power consumed by cores and caches, power and performance of the interconnects is a significant factor as the communication network consumes a considerable share of the power budget. In particular, the buffers used at every port of the NoC router consume considerable dynamic as well as static power. To support dark silicon and save energy, a popular approach is to power off the routers and wake them up when needed. However, this affects the packet latency, and we need to observe the traffic through the nodes to decide turning the routers ON–OFF. In this article, we propose to keep the routers always powered ON to maintain constant connectivity and investigate various approaches. One proposal is to frequency scale the routers connected to powered OFF nodes, and the other proposals are to use a combination of SRAM and nonvolatile spin-transfer torque random access memory-based VCs in the routers. By managing which VCs to be active at a given time, we achieve energy savings. The proposals are evaluated by varying the percentage of dark nodes on the chip. The experimental results show that all proposals yield significant energy savings while maintaining connectivity.
               
Click one of the above tabs to view related content.