LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PVoT: Reconfigurable Photovoltaic Array for Indoor Light Energy-Powered Batteryless Devices

Photo by labrum777 from unsplash

Multiple photovoltaic (PV) modules are often used to provide enhanced harvesting capability for light energy-based Internet of Things (IoT) devices. PV modules facing multiple directions can lead to a situational… Click to show full abstract

Multiple photovoltaic (PV) modules are often used to provide enhanced harvesting capability for light energy-based Internet of Things (IoT) devices. PV modules facing multiple directions can lead to a situational energy loss when parts of the modules are shaded. To address this issue, existing solutions exploit reconfigurable PV arrays to acquire the optimal configuration in a given situation. However, conventional techniques are not energy efficient in estimating the harvesting capability of PV modules, and require high computation to find the optimal PV array at runtime. In this article, we propose PVoT, an energy-efficient reconfigurable PV array, which maximizes the harvesting energy for indoor IoT devices. To this end, we propose the use of photoresistors to estimate the harvesting capability with minimal energy overhead. We also provide hardware and software schemes, which perform event-driven light change detection in an energy-efficient way. Furthermore, we develop a power imbalance threshold metric to quickly find the optimal PV array at runtime. We implemented a prototype PVoT with off-the-shelf components and accompanying software. Experiments with the prototype hardware showed that PVoT achieves a gain of up to 23.9% in harvested energy compared to the existing directly connected PV array scheme.

Keywords: harvesting capability; light energy; energy; indoor; energy efficient; array

Journal Title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.