LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving de novo Assembly Based on Read Classification

Photo by madalyncox from unsplash

Due to sequencing bias, sequencing error, and repeat problems, the genome assemblies usually contain misarrangements and gaps. When tackling these problems, current assemblers commonly consider the read libraries as a… Click to show full abstract

Due to sequencing bias, sequencing error, and repeat problems, the genome assemblies usually contain misarrangements and gaps. When tackling these problems, current assemblers commonly consider the read libraries as a whole and adopt the same strategy to deal with them. However, if we can divide reads into different categories and take different assembly strategies for different read categories, we expect to reduce the mutual effects on problems in genome assembly and facilitate to produce satisfactory assemblies. In this paper, we present a new pipeline for genome assembly based on read classification (ARC). ARC classifies reads into three categories according to the frequencies of k-mers they contain. The three categories refer to (1) low depth reads, which contain a certain low frequency k-mers and are often caused by sequencing errors or bias; (2) high depth reads, which contain a certain high frequency k-mers and usually come from repetitive regions; and (3) normal depth reads, which are the rest of reads. After read classification, an existing assembler is used to assemble different read categories separately, which is beneficial to resolve problems in the genome assembly. ARC adopts loose assembly parameters for low depth reads, and strict assembly parameters for normal depth and high depth reads. We test ARC using five datasets. The experimental results show that, assemblers combining with ARC can generate better assemblies in terms of NA50, NGA50, and genome fraction.

Keywords: based read; read classification; assembly based; depth reads

Journal Title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.