Essential proteins are indispensable for maintaining normal cellular functions. Identification of essential proteins from Protein-protein interaction (PPI) networks has become a hot topic in recent years. Traditionally biological experimental based… Click to show full abstract
Essential proteins are indispensable for maintaining normal cellular functions. Identification of essential proteins from Protein-protein interaction (PPI) networks has become a hot topic in recent years. Traditionally biological experimental based approaches are time-consuming and expensive, although lots of computational based methods have been developed in the past years; however, the prediction accuracy is still unsatisfied. In this research, by introducing the protein sub-cellular localization information, we define a new measurement for characterizing the protein's subcellular localization essentiality, and a new data fusion based method is developed for identifying essential proteins, named TEGS, based on integrating network topology, gene expression profile, GO annotation information, and protein subcellular localization information. To demonstrate the efficiency of the proposed method TEGS, we evaluate its performance on two
               
Click one of the above tabs to view related content.