This article aims to build deep learning-based radiomic methods in differentiating vessel invasion from non-vessel invasion in cervical cancer with multi-parametric MRI data. A set of 1,070 dynamic T1 contrast-enhanced… Click to show full abstract
This article aims to build deep learning-based radiomic methods in differentiating vessel invasion from non-vessel invasion in cervical cancer with multi-parametric MRI data. A set of 1,070 dynamic T1 contrast-enhanced (DCE-T1) and 986 T2 weighted imaging (T2WI) MRI images from 167 early-stage cervical cancer patients (January 2014 - August 2018) were used to train and validate deep learning models. Predictive performances were evaluated using receiver operating characteristic (ROC) curve and confusion matrix analysis, with the DCE-T1 showing more discriminative results than T2WI MRI. By adopting an attention ensemble learning strategy that integrates both MRI sequences, the highest average area was obtained under the ROC curve (AUC) of 0.911 (Sensitivity
               
Click one of the above tabs to view related content.