LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparing phylogenetic approaches to reconstructing cell lineage from microsatellites with missing data.

Photo from wikipedia

Due to the imperfect fidelity of DNA replication, somatic cells acquire DNA mutations at each division which record their lineage history. Microsatellites, tandem repeats of DNA nucleotide motifs, mutate more… Click to show full abstract

Due to the imperfect fidelity of DNA replication, somatic cells acquire DNA mutations at each division which record their lineage history. Microsatellites, tandem repeats of DNA nucleotide motifs, mutate more frequently than other genomic regions and by observing microsatellite lengths in single cells and implementing suitable inference procedures, the cell lineage tree of an organism can be reconstructed. Due to recent advances in single cell Next Generation Sequencing (NGS) and the phylogenetic methods used to infer lineage trees, this work investigates which computational approaches best exploit the lineage information found in single cell NGS data. We simulated trees representing cell division with mutating microsatellites, and tested a range of available phylogenetic algorithms to reconstruct cell lineage. We found that distance-based approaches are fast and accurate with fully observed data. However, Maximum Parsimony and the computationally intensive probabilistic methods are more robust to missing data and therefore better suited to reconstructing cell lineage from NGS datasets. We also investigated how robust reconstruction algorithms are to different tree topologies and mutation generation models. Our results show that the flexibility of Maximum Parsimony and the probabilistic approaches mean they can be adapted to allow good reconstruction across a range of biologically relevant scenarios.

Keywords: cell; lineage; cell lineage; comparing phylogenetic; missing data; reconstructing cell

Journal Title: IEEE/ACM transactions on computational biology and bioinformatics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.