LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

TSDLPP: A Novel Two-stage Deep Learning Framework for Prognosis Prediction Based on Whole Slide Histopathological Images.

Photo from wikipedia

Recently, digital pathology image-based prognosis prediction has become a hot topic in healthcare research to make early decisions on therapy and improve the treatment quality of patients. Therefore, there has… Click to show full abstract

Recently, digital pathology image-based prognosis prediction has become a hot topic in healthcare research to make early decisions on therapy and improve the treatment quality of patients. Therefore, there has been a recent surge of interest in designing deep learning method solving the problem of prognosis prediction with digital pathology images. However, whole slide histopathological images (WSIs) based prognosis prediction is still a challenge due to the large size of pathological images, the heterogeneity of tumors and the high cost of region of interests (ROIs) labeling. In this study, we design a novel two-stage deep learning framework for prognosis prediction (TSDLPP) based on WSIs. Our proposed framework consists of two-stage paradigms: 1) training tissue decomposition network (TDNet) to divide WSIs into cancerous and non-cancerous regions, 2) integrating general prognosis-related densely connected CNN (GPR-DCCNN) and morphology-specific prognosis-related densely connected CNNs (MSPR-DCCNNs) to extract different level features of pathological images. In the end, we apply TSDLPP to the prognosis prediction of breast cancer using The Cancer Genome Atlas (TCGA) datasets. Experiment results demonstrate that TSDLPP obtains superior performance of prognosis prediction compared with the existing state-of-arts methods.

Keywords: prognosis prediction; pathology; prognosis; deep learning; two stage

Journal Title: IEEE/ACM transactions on computational biology and bioinformatics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.