Glutarylation is a type of post-translational modification that occurs on lysine residues. It plays an irreplaceable role in various cellular functions. Therefore, identification of glutarylation sites is significant for understanding… Click to show full abstract
Glutarylation is a type of post-translational modification that occurs on lysine residues. It plays an irreplaceable role in various cellular functions. Therefore, identification of glutarylation sites is significant for understanding the molecular mechanism of glutarylation. In this study, we proposed a method named DEXGB_Glu to identify lysine glutarylation sites using XGBoost as classifier which was optimized by differential evolution algorithm. Aiming at the imbalance between positive samples and negative samples, Borderline-SMOTE method was employed to synthesize positive samples, increasing their amount equal to negative samples. Then, Tomek links technique was applied to filter out noise data. Analysis of this method and its results showed that differential evolution algorithm obviously improved the performance and the combination of Borderline-SMOTE and Tomek links effectively solved the imbalance between positive samples and negative samples. Finally, the performance of this method was much better than other methods in prediction of glutarylation sites. The data and code are available on https://github.com/ningq669/DEXGB_Glu.
               
Click one of the above tabs to view related content.